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Abstract 

The low-rank perturbation (LRP) method solves the perturbed eigenvalue equation 
(B + V)W k = ek(C + P)qJk, where the eigenvalues and the eigenstates of the related 
unperturbed eigenvalue equation Bqb i = ~iC~i are known. The method is designed for 
arbitrary n-by-n matrices B, V, C, and P, with the only restriction that the eigenstates 
qb i of the unperturbed equation should form a complete set. We consider here a real LRP 
problem where all matrices are Hermitian, and where in addition matrices C and (C + P) 
are positive definite. These conditions guarantee reality of the eigenvalues E k and ~i. 
In the original formulation of the LRP method, each eigenvalue E k is obtained iteratively, 
starting from some approximate eigenvalue e,~. If this approximate eigenvalue is not 
well chosen, the iteration may sometimes diverge. It is shown that in the case of a real 
LRP problem, this danger can be completely eliminated. If the rank p of the generalized 
perturbation {V, P} is "small" with respect to n, then one can easily bracket and hence 
locate to any desirable accuracy the eigenvalues ek (k = 1 . . . . .  n) of the perturbed 
equation. The calculation of all n eigenvalues requires O(p2n 2) operations. In addition, 
if the perturbation { V, P} is local with the localizability l = p, then only O(pZn) operations 
are required for a derivation of a single eigenvalue. 

1. I n t r o d u c t i o n  

The Low-Rank Perturbation (LRP) method [1 ] solves the generalized perturbed 
eigenvalue equation 

(B + V)W k = ek(C + P)W~, (1) 

where B, V, C, and P are n-by-n matrices, and where the solution of the corresponding 
generalized unperturbed eigenvalue equation 

B ~i  = ~i C ~i  (2) 

is known. Matrices B, V, and P are arbitrary, with the only restriction that matrix 
C should be nonsingular and matrix Cq/2BC -1/2 nondefective [1]. These conditions 

© J.C. Baltzer AG, Scientific Publishing Company 



56 T.P. Zivkovi6, The real generalized eigenvalue equation 

are equivalent to the requirement that relation (2) should have a complete set of  
eigenfunctions. 

The LRP method works for any "perturbation" {V, P}. However, the method 
is most efficient if the rank p of this perturbation is "small" with respect to n [1,2]. 
The operation count for the derivation of all eigenvalues and all eigenstates of (1) 
by the LRP method is O(p2n2). In comparison, the Householder-QR method, which 
is presently the best method for the derivation of all eigenvalues and all eigenstates 
of a real symmetric matrix [3], requires O(n 3) operations [3]. If the solution of the 
unperturbed system is known, and if the rank p of the perturbation is sufficiently 
small with respect to n, the LRP method is by an order O(n) faster. 

A special case of  low-rank perturbations are local and piecewise local 
perturbations. Such perturbations are confined to a small fraction of the initial 
unperturbed system described by matrices B and C. If the generalized perturbation 
{V, P} is local or piecewise local with the localizability l, then only O(12n) operations 
are needed for the derivation of a single eigenvalue and/or eigenstate [1]. If the 
localizability l is sufficiently "small", the LRP approach is almost two orders of  
magnitude faster than any presently known method. 

The LRP method is potentially very useful for various quantum chemical 
problems. Physically, most perturbations frequently encountered are either local or 
piecewise local. For example, a formal replacement of an atom with another atom 
and creation or annihilation of a chemical bond are local perturbations. Also, the 
interaction of two molecules A and B is usually confined to a small fraction of  these 
molecules, and hence it is a local perturbation. A piecewise local perturbation is a 
more general perturbation which consists of  few local perturbations, such as creation 
and/or annihilation of a few bonds and/or substitutions of a few atoms. 

In the case of simple molecular models, where no SCF readjustment of  
molecular orbitals is required, the LRP approach can be applied directly to all the 
above perturbations. In the case of various SCF-type models, such perturbations can 
be represented as a sum of a dominant local matrix and a small nonlocal matrix. 
The nonlocal contribution to the perturbation matrix is due to the SCF readjustment 
of molecular orbitals. A major part due to the readjustment can also be included 
in the dominant local matrix. The remaining nonlocal component is usually very 
small. Hence, one can apply the LRP method to the dominant low-rank component 
in an iterative SCF manner, and the remaining small component can be efficiently 
treated either with a standard perturbation method or in some other way. 

Similar combined methods can be applied to the calculation of  isoenergy 
surfaces. If the underlying model does not include SCF readjustment, the LRP 
method produces each isoenergy surface in a closed analytical form [4]. In the case 
of  various SCF models, one can again treat the residual contribution due to the 
nonlocal readjustment of molecular orbitals as a small perturbation. Note finally 
that in its present formulation, the LRP method can not be directly applied to the 
CI-type calculations. Although the perturbation can be physically local, the rank of  
the corresponding perturbation matrix is very large in a CI formalism. 
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In its general formulation [1], the LRP method applies to arbitrary matrices 
which are not necessarily Hermitian. In particular, the eigenvalues e k of the eigenvalue 
eq. (1) can be complex. However, in quantum mechanics one almost invariably 
encounters the eigenvalue eq. (1), where matrices B and V are Hermitian and 
where matrices C and (C + P) are Hermitian and positive definite. For example, in 
a variety of molecular models matrices B and (B + V) represent Hamiltonians, 
while matrices C and (C + P) represent overlap matrices defined over some set of 
linearly independent atomic orbitals. In such a case, all matrices are Hermitian, 
while matrices C and (C + P) are in addition positive definite. This guarantees that 
the eigenvalues e~ of (1) and the eigenvalues ~i of (2) are real. We will refer to the 
LRP problem involving matrices with the above-stated properties as a "real" LRP 
problem. 

A real LRP problem is mathematically a rather special case of the general 
LRP problem. It is hence reasonable to expect that in the case of a real LRP problem 
one could utilize special properties of the matrices involved, thus improving the 
original LRP method. This is indeed the case. In particular, the LRP calculation of 
the eigenvalues is relatively unstable in the case of arbitrary matrices, since the 
calculation of each eigenvalue e k requires a good choice of the initial approximate 
eigenvalue e£ -- e k, which is then iteratively improved [1,2]. We will show that in 
the case of a real LRP problem, the calculation of the eigenvalues can be successfully 
stabilized. In particular, we will show that the number N(B + V, C + P, e) of 
eigenvalues of the perturbed eigenvalue eq. (1) that are > e is related to the number 
N(B, C, e) of eigenvalues of the unperturbed eigenvalue eq. (2) that are > e through 
the relation 

N(B + V, C + P, e) = N(B, C, e) + Jr(S(e) -N-~(e)) - a:(-N(e)), 

where zc(A) is the number of positive eigenvalues of a matrix A, and where 
S ( e ) -  N-l(e) and N(e) are p-by-p matrices which can be easily constructed from 
the known solution of the unperturbed eq. (2) and from the perturbation matrices 
V and P. This relation enables successful bracketing of the eigenvalues e k of the 
perturbed eigenvalue eq. (1). In combination with the fast iterative evaluation of 
these eigenvalues [1,2], this relation provides a fast and completely stable and 
reliable algorithm for the calculation of these eigenvalues. 

Two points should be emphasized. First, the efficiency of the LRP method 
is not affected by the magnitude of the perturbation. In the standard perturbation 
expansion method, the magnitude of the perturbation limits the usefulness of the 
method. Unless the perturbation is small, the perturbation expansion is numerically 
not efficient, and in some cases the perturbation diverges. In the LRP method, the 
dominant factor is the rank of the perturbation and the efficiency of the method is 
not affected by its magnitude. 

Another point concerns degeneracy and quasi-degeneracy of unperturbed systems. 
In the standard perturbation methods, degenerate and quasi-degenerate systems 
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require a special treatment. In the LRP method all systems, nondegenerate as well 
as degenerate and quasi-degenerate, are treated in a uniform way. Numerically, the 
LRP treatment of  degenerate and quasi-degenerate systems is of  the same complexity 
as the LRP treatment of  nondegenerate systems. We consider both points in more 
detail in section 4. 

2. The L R P  method 

In the LRF' method, the eigenvalues Z i and the corresponding eigenstates Oi 
of  the generalized unperturbed eq (2) are assumed to be known. Without loss of  
generality, one can assume that the eigenstates Oi satisfy the generalized biortho- 
normalized rclation [1] 

(,vi I f  I%)  = (3) 

The matrix V in (1) is the "perturbation" of  the matrix B, while the matrix 
P is the "perturbation" of  the matrix C. We refer to a pair {V, P} as a "generalized" 
perturbation. 

Let Pv and pp be the ranks of  matrices V and P, respectively. Define the 
"rank" p of  the generalized perturbation {V, P} as the sum 

P = Pv + Pp. (4) 

This quantity determines the numerical efficiency of  the LRP method. In order for 
the LRP method to be efficient, the rank p should be "small" with respect to n. 

Perturbation matrices V and P can be written in the form 

m ,u 
V :  £CO~UsV, +, P =  £ r s x s y + ~ ,  (5a) 

s = l  s = l  

+ and y+ where co t ~ 0 and ~:s ~ 0 are scalars, u s and x~ are column vectors, while v s 
are row vectors. By definition, components of  the row vector u + are the complex 
conjugate of  the corresponding components of  the column vector u. 

We will use the notation U = [u 1 . . . . .  u,,,] in order to denote an n-by-rn 
matrix whose ith column is a column vector U i. We will also use the notation 
A = diag(a I . . . . .  am) in order to denote an m-by-m diagonal matrix with diagonal 
elements a i. In addition, we will sometimes use a b r a - k e t  notation <u [ and Iv> in 
order to emphasize the independence of  the particular choice of  the basis. For 
example, we will use the notation <u I v )  in order to denote a scalar product-u+v 
between vectors u and v. 

With the above conventions, relations (5a) can be written in the matrix 
notation 
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V = U ~ V  +, P = X T Y  +, ( 5 b )  

where  f~ = diag(co 1 . . . . .  co,.) and T = diag( 'q  . . . . .  "r u) are diagonal  matrices,  and 
where  U = [u 1 . . . . .  urn], V = Iv  I . . . . .  v"] ,  X = Ix 1 . . . . .  x u] and Y = [3, . . . . .  yu] 
are matr ices  const ructed  from vectors  u i, v i, x i and Yi. 

In general, all vectors  entering the above expressions can be linearly dependent.  
If  the vectors  I us) as well  as the vectors  ( v  S I are l inearly independent ,  then m = p~ 
is the rank of  V. Otherwise ,  m > po. Similarly,  if  the vectors  I xs) as wel l  as the 
vectors  (YsI are l inearly independent ,  then # = p p  is the rank o f  P. Otherwise ,  

> pp. Howeve r ,  any l inear dependence  be tween  the vectors  I us), I vs), I xs) or  l Y,) 
can be easi ly  el iminated [1]. Hence,  one can, wi thout  loss of  generali ty,  assume 
m = p ~  a n d # = p p ,  i . e . p = m + # .  

The  LRP  method can be formula ted  in various ways  [1]. Here,  we will  use 
the formulat ion which is appropriate for the intended improvement  o f  the der ivat ion 
o f  the e igenvalues .  

In order  to s implify the notat ion,  we  write  all vec tors  which  de termine  
representat ion (5) o f  the per turbat ion {V, P} in a compac t  form 

g 

J lus) s = 1 . . . . .  m, Iz,) 
I X s - " )  s = m + l  . . . . .  m + # ;  

f 
(w,l= J (v,I s =  1 . . . . .  m ,  

L ( Y s - , ,  I s = m + l  . . . . .  r n + # .  

(6a) 

We also cons ider  a diagonal  matrix N ( e ) =  d iag( r  h . . . . .  r/ , .+u), where  diagonal  
e lements  r/s - r/s(e ) are defined in terms of  the quanti t ies cos and v S 

F 

J co, s = 1 . . . . .  rn,  
r/s ( E) 

-e ' r s  -m s = m + l  . . . . .  m+l-t. 
(6b) 

In matrix form 

We can now define (m +/ . t ) -by-(m + # )  matrix S(e) ,  which  depends  on a parameter  
e and which  has matrix e lements  

n 

Ssp(e)  = ~ ( W s [ ~ i ) ( ~ i l z p )  ( s , p =  1 . . . . .  m + # ) .  (8a) 
i=1 e - ~ i  
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Each nonzero eigenvalue e~ ~ {~i} of  the eigenvalue eq. (1) is now a solution 
of  the equation 

D ( e )  = IS (e )  - N - l ( e )  I = 0, (9) 

where D(e) is the determinant of a matrix R(e) - S(e) - N-I(e).  Inversely, each root 
e 0 ~ {2i} of  D(e) is an eigenvalue of  eq. (1) [1]. 

Further, if e off {~i} is a nonzero root of (9) and hence an eigenvalue of  (1), 
each eigenstate q' corresponding to this eigenvalue is of  the form 

where 

1¢~i), (lOa) 

G = G ( e o )  I ' e ) .  (lOb) 

Moreover, the coefficients Cp (p = 1 . . . . .  m + #)  satisfy 

m + #  

Z :o, 
p = i  

s =  1 . . . . .  m + # .  (10c) 

Inversely, if e o ff {2i} is a nonzero eigenvalue of (1), each state • of  the form (10a) 
where the coefficients Cp are the (nontrivial) solution of the linear set (10c) is the 
corresponding eigenstate. Moreover, these coefficients satisfy (10b) [1]. 

In the general LRP method where matrices B, V, C, and P can be almost 
arbitrary, one has to distinguish between fight and left eigenstates. In particular, 
relations (10) apply only to the right-hand side eigenstates [~ )  = [~R) of the perturbed 
eq. (1), while bra vectors (q~i[ - (q~)[ in (10a) refer to the left-hand side eigenstates 
of the unperturbed eq. (2). There are analogous relations for the left-hand side 
eigenstates of (~L[ of (1) [1]. However, in this paper we will explicitly consider 
only a real LRP problem. One can easily show that in this case, left- and right-hand 
side eigenstates coincide. 

Relations (9) and (10) solve the perturbed eigenvalue eq. (1) for all "cardinal" 
eigenvalues G ~ {~ti} except, possibly, for the eigenvalue e k = 0. This eigenvalue 
can be easily treated separately. There are analogous relations for the "singular" 
eigenvalues G e {Xi} [1]. For the sake of simplicity, here we will consider only 
cardinal eigenvalues. 

In order to find cardinal eigenvalues, one has to solve the characteristic 
equation D(e)= 0. The function D(e) is an (m + #)-order  determinant, and it is 
analytic in e. Unless there is some accidental cancellation of terms [1,2], this 
determinant has a pole at each ~i, and nowhere else. The characteristic equation 
D(e) = 0 can be solved iteratively, and the corresponding operation count strongly 
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depends on (m + #). Since one can assume m + # = p, this method of deriving 
cardinal eigenvalues is efficient whenever the rank p of the perturbation {V, P} is 
small (p  << n). 

Once the root e = e 0 of (9) is known, one finds the corresponding eigenstate(s) 
using relations (10a) and (10c). Since the determinant D(eo) vanishes, the homogeneous 
linear set (10c) of (m + #) equations in (m + #) unknowns Cp has at least one 
nontrivial solution. After the coefficients C e are derived, one obtains the corresponding 
eigenstate W by inserting these coefficients into (10a). Assuming again p = m + #, 
the solution of the homogeneous linear system (10c) requires O(p3) operations. The 
subsequent insertion of the obtained coefficients Cp into (10a) requires =pn operations. 
The derivation of W is hence also efficient whenever p << n. 

The derivation of the eigenstate(s) corresponding to a given eigenvalue e = e o 
presents no problem numerically. There are very stable and reliable methods for the 
solution of the homogeneous linear set of equations [3, 8]. The solution of relations 
(10a) and (10c) is hence simple and straightforward. This is not the case for the 
derivation of the eigenvalue ~o. Each eigenvalue to ~ {)~i} of (1) is a root of the 
LRP eq. (9). In general, one obtains this root by some iterative method starting from 
an approximate solution e~ = e 0 [1,2]. As predicted theoretically [1] and as shown 
by numerical experiments [2], the calculation of a single eigenvalue requires o(pZn) 
operations. However, if the initial approximate root e~is not well chosen, the 
iteration may sometimes diverge. There is no simple and easy way to guarantee the 
convergence in all cases. This problem is further complicated in the case of degenerate 
and nearly degenerate roots. It is hence quite important to formulate a stable and 
reliable algorithm for the calculation of the eigenvalues of (1). We will show how 
this can be done in the case of the real LRP problem, i.e. in the case where all 
matrices are Hermitian and where in addition matrices C and (C + P) are positive 
definite. 

3. Eigenvalues in the case of the real LRP problem 

Consider a real LRP problem. Since matrix (C + P) is by assumption 
Hermitian and positive definite, matrix (C + p)-~n is a well-defined Hermitian matrix. 
Relation (1) can hence be transformed to a simple eigenvalue equation with matrix 
A = (C + P)-U2(B + V)(C + p)-~/2 Since matrices B, V and (C + p)-U2 are Hermitian, 
matrix A is also Hermitian. It follows that the eigenvalues e k of the eigenvalue 
eq. (1) are real and that the corresponding eigenstates q'k form a complete set. 

Instead of the perturbed eigenvalue eq. (1), we will consider the auxiliary 
eigenvalue equation 

(B + V -  ~P) Zj(~) = ~(~) C Zj(~), (11) 

where ~ is a parameter. Each eigenvalue ~(~) and the corresponding eigenstate(s) 
Zj(~) of the eigenvalue eq. (11) is a function of a parameter ~. One easily finds that 
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in the point ~ such that ?~(~) = 4, one has 4 =  e k for some eigenvalue ek of (1). 
Inversely, each eigenvalue e k of (1) satisfies ~.(e~) = e~ for some j. Further, since 
all eigenvalues e k are real, the relation ~.(~)= ~ can have only real solutions. 
Geometrically,  each eigenvalue e k of relation (1) lies on the intersection of  some 
function ~(~)  with the line "/= ~ (see fig. 1). 

/ E k 

Fig. 1. Each eigenvalue ~(~) of the auxiliary eq. (9) 
crosses the line y= ~ exactly once. These crossing 
points are eigenvalues t~ k of the perturbed eq. (l). 

The auxiliary eigenvalue eq. (11) and the unperturbed eigenvalue eq. (2) are 
equivalent to 

(B' + V ' -  ~ P')Zj ' (~) = Yj(~)Zj'(~), (12a) 

B'qb~ = Xi qb~, (12b) 

respectively, where 

B' = C- I /2BC -1/2, V '  = C - I / 2 V C  -1/2, P'  = C - 1 / 2 p c  -1/2, 

Xjt= CI/2xj , (I)~= CI/2(~)i. (12c) 

Since C is by assumption Hermitian and positive definite, C -1/2 is well defined and 
Hermitian. Since matrices B, V, and P are also Hermitian, it follows that matrices 
B', V', and P' are Hermitian as well. Each eigenvalue '~(~) is hence a real function 
of 4. In addition, since all matrices are finite dimensional,  each eigenvalue ~-(~) is 
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an analytic function on the real ~ axis [5]. In particular, Ys(~) has a well-defined 
derivative for each real ~. 

Consider now the derivative a?~/~.  Using the identity 

a ( z /  = (az /  i + ( z /  az /  = o, 

where ~,jt(~) is a normalized eigenstate of (12a), one finds 

~.~la ~ = -(Xs'(~)I P'I 2:j'(~)). (13) 

Using this expression, we prove in the appendix the following lemma: 

LEMMA 1 

Let matrices B, V, C, and P be Hermitian, and let matrices C and C + P be 
positive definite. Further, let ~(~) be the eigenvalue of (11). Then, for real ~, 

< 1. (14) 

Geometrically, the slope of the function ~(~) is smaller than 1. Hence, each 
function ~(~) crosses the line 9/= ~ at most once. In the appendix, we show that 
this function crosses the line 9/= ~ exactly once, and hence the equation ~(~) = 
has exactly one solution (see fig. 1). 

Let now N(B, C, e) denote the number of eigenvalues of the generalized 
eigenvalue eq. (2) which are >e, and let N(A,  e) - N(A,  I, e) denote the number 
of eigenvalues of the Hermitian matrix A that are >e. In the appendix, we prove: 

THEOREM 1 

Let matrices B, V, C, and P be Hermitian, and let matrices C and (C + P) 
be positive definite. Further, let ~ be arbitrary but fixed. Then 

N(B + V -  ~P, C, ~) = N(B + V, C + P, ~). (15) 

The number of eigenvalues ~(~) of relation (11) that are >~ equals the 
number of eigenvalues e k of relation (1) that are > ~. This theorem thus relates the 
eigenvalues ek of the perturbed eigenvalue eq. (1) with the eigenvalues ~(~) of the 
auxiliary eigenvalue eq. (11). 

Since we are considering a real LRP problem, matrices V and P are Hermitian, 
and hence they can be represented in the symmetric form 
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m # 
+ 

V =  ~ cosu, u + = U n U  +, P =  ~ s X s X s = X T X  +, (5c) 
s=l s= l  

where fa = diag(co 1 . . . . .  corn) and T = diag(~: 1 . . . . .  "r u) are now real diagonal matrices, 
while U = [u 1 . . . . .  urn] and X = [x 1 . . . . .  x u] are n-by-m and n-by-# matrices, 
respectively. In particular, vectors lu,)  and Ixs) can be chosen to be normalized 
eigenstates of operators V and P, respectively, in which case cos and ~s are the 
corresponding eigenvalues. 

Since matrices V and P are now represented in a symmetr ic  form (5c), 
relation (8a) reduces to 

<Zsl~i>(~ilzp> 
Ssp (E) = 

/=1 c - ~ i  
( s , p =  1 . . . . .  m + # ) ,  (8b) 

where vectors z, are given with (6a). Matrix S(e) is hence Hermitian whenever  e 
is real. Since ~ and T are real, matrix N(e) is also Hermitian for real e. 

Consider now matrices K(e, ~) and L(e, ~) 

I B ' + V ' - ~ P ' - e  O 1 L = ( B ' - e  O 1. (16) 
K =  0 - N - I ( ~ )  ' 0 S ( e ) - N - I ( ~ )  

These matrices are defined for each e E {~i} and each ~ ,  0. In the points 
e ~ {Xi}, matrix S(e) is not defined, while in the point ~ = 0, matrix N(~) has no 
inverse. Hence, in these points matrices K and L are not defined. Note also that 
matrices K(e, ~) and L(e, ~) are Hermitian whenever  the parameters e and ~ are 
real. This follows from the Hermiticity of  matrices B', V', P',  S(e), and N(~). 

We now recall the definition of the congruency of matrices A and B, 
and the definit ion of the inertia of  a Hermitian matrix A [6-8] .  By definition, 
matrices A and B are "congruent" if there exists a nonsingular matrix M such that 
B = M A M  + [6]. Further, the inertia of  a Hermitian matrix A is a triad (v(A), ~(A), 
n(A)), where v(A), ~'(A), and n(A) are, respectively, the number  of  negative,  zero, 
and positive eigenvalues of A [6-8] .  

In the appendix, we prove the following: 

L E M M A  2 

Matrices K(e, ~) and L(e, ~) are congruent. 

By Sylvester's law [6-8] ,  if matrices A and B are Hermitian and if they are 
congruent,  then they have the same inertia. Lemma 2 hence implies that for real 
and e, matrices K and L have the same inertia. In particular, these matrices have 
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the same number of positive eiganvalues, i.e. zr(K)= rffL). However, according 
to (16), 

~(K) = u(B' + V ' -  ~ P ' -  e) + ~r(-N-l(~)) ,  

n:(L) = :¢(B ' -  e) + ~:(S(e) - N-I(~)), 
(17a) 

One also finds zc(A) = rc(A -1) for a nonsingular matrix A. Further, one can write 

zc(B' + V ' -  ~ P ' -  e) = N(B'  + V ' -  ~P', e), zc(B'- e) = N(B' ,  e), (17b) 

where N ( A ,  e) - N ( A ,  I, e) is the number of eigenvalues of a Hermitian matrix A 
that are >e. 

Collecting the above relations, one finds 

N ( B '  + V' - ~P' ,  e) = N(B ' ,  e) + rc(S(e) - N-1(~)) - zc(-N(~)).  

This expression relates the number of eigenvalues 7k of the matrix (B' + V' - ~P ' )  
that are > e to the number of eigenvalues Xi of the matrix B' that are >e. This 
relation is true for each real e, and in particular for the choice of e = ~. However, 
by theorem 1 the number of eigenvalues of the matrix (B' + V'  - ~P ' )  that are >~ 
equals the number of eigenvalues of relation (1) that are >~. Moreover, matrix B' 
and the eigenvalue eq. (2) have the same eigenvalues. One thus finally obtains: 

THEOREM 2 

Let e be arbitrary but fixed, and let matrices B, V, C, and P be Hermitian. 
Further, let matrices C and (C + P) be positive definite. Then 

N ( B  + V, C + P, e) = N(B,  C, e) + 1r(S(e) - N-l(e))  - r r ( -N(e) ) .  (18) 

Expression (18) relates the number N ( B  + V, C + P, e) of  eigenvalues e k of  
the perturbed eigenvalue eq. (1) that are > e to the number N(B,  C, e) of  eigenvalues 
Xi of  the unperturbed eigenvalue eq. (2) that are >e. This expression generalizes 
a result obtained previously by Arbenz and Golub [9]. These authors have obtained 
a similar equation for a special case C = I and P = O. An expression analogous to 
the one obtained by Arbenz and Golub was independently derived by Beatie and 
Fox [10]. A corresponding formula for a substantially more restricted eigenvalue 
problem was given by Simpson [11]. 

The proof of  the above theorem depends in an essential way on the fact that 
matrices C and C + P are Hermitian and positive definite. In particular, it is not 
sufficient for these matrices to be only Hermitian. For example, if  C is Hermitian 
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but not positive definite, then C -1/2 is either not defined (in the case when C is 
singular) or if defined, it is not Hermitian. Namely, if C has some negative eigenvalue, 
then the corresponding eigenvalue of C -1/2 is imaginary and hence C -1/2 can not be 
Hermitian. Hence, neither the eigenvalues A,i of  the unperturbed eigenvalue eq. (2), 
nor the eigenvalues ~.(~) of  the auxiliary eigenvalue eq. (1 1) are guaranteed to be 
real. Matrices B', V', and P '  are also not Hermitian, except possibly by accident. 
On the other hand, if C + P is Hermitian but not positive definite, then one finds, 
following an analogous argument  as above, that the eigenvalues e k of the perturbed 
eigenvalue eq. (1) are not guaranteed to be real. The same conclusion can be 
obtained in yet another way. The proof  of lemma 1 depends in an essential way on 
the fact that C + P is positive definite. If this matrix is not positive definite, eigenvalues 
~(~)  of the auxiliary eigenvalue eq. (1 1) are not guaranteed to have slope less than 
one. Hence, the function ~(~) is not guaranteed to cross the line y=  ~, i.e. ~(~) = 
is not guaranteed to have a solution for real ~. 

Relation (18) enables an efficient bracketing of the eigenvalues e k of  the 
perturbed eigenvalue eq. (1). This relation is defined for each real e, except  for the 
points e ~ {/'Li} which are eigenvalues of  the unperturbed eigenvalue eq. (2) and 
which are poles of  the matrix S(e), and for the point e = 0 which is a pole of  a 
matrix N-l(e).  If one evaluates N ( B  + V, C + P, e) in two points e = e" and e = e", 
the difference of  the two numbers obtained is the number  of  eigenvalues ek that are 
inside the interval (e' ,  e"]. Choosing different points e = e '  for the evaluation of  the 
expression N ( B  + V, C + P, e), one can successfully bracket each eigenvalue e k. 

Relation (18) can be modified in such a way as to include points e ~  {;Li}. 
However, this more general relation involves matrices with larger dimensions,  thus 
increasing the operation count. From a theoretical point of  view, relation (18) is 
sufficient since, using this relation, one can bracket in an arbitrarily small interval 
each eigenvalue e k, including eigenvalues ek ~ {~i}. Some numerical  difficulties 
could arise only if S(e) is evaluated at some point too close to an eigenvalue &g, 
since S(e) diverges at e 6 {&g}. 

4. Numer ica l  cons idera t ions  

Relation (18) is our basic equation for the derivation of  the eigenvalues ek 
of  the perturbed eigenvalue eq. (1) in the case of  the real LRP problem. Usually, 
one has to recalculate this expression repeatedly for various values of the parameter  
e. This is necessary in order to bracket and finally isolate the eigenvalues e k. It is 
hence important that repeated recalculations of this expression be fast and efficient. 

All the quantities on the right-hand side of (18) can be obtained relatively 
easily. Calculation of  the quantities N ( B ,  C, e) and rc(-N(e))  presents no problem. 
The number  N(B ,  C, e) of eigenvalues /~i that are > e is by assumption known. In 
addition, this number  is constant if e is required to be contained inside the interval 
between two consecutive eigenvalues ;L i. 
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Concerning the number n : ( - N ( e ) ) =  v(N(e)), one has from (7) 

v ( f2 )+v(T)  if e < 0 ,  
~r(-N (e)) = v(f2) + ~r(T) if e > 0. 

Since f l  and T are diagonal, this is trivial to calculate. This number does not change 
unless e changes sign. In addition, if the vectors u s as well as the vectors x, in the 
decomposition (5a) are linearly independent, then v(f~) = v(V), z'(T) = ;¢(P) and 
v(T) = v(P). 

Only the number rc (S(e) -  N-l(e))  of  the positive eigenvalues of  a matrix 
R(e) = S(e) - N-l(e)  requires some nontrivial calculation. As a function of  e this 
number is constant, except for the points e = e k ~ {~i} which are eigenvalues of  (1). 
In these points, matrix R(e) = S(e) - N-l(e)  is singular, and hence the corresponding 
determinant vanishes. This recovers the original LRP eq. (9), with the restriction 
I ws) = Izs) in (Sa). Considered as a function of  e, matrix R(e) changes the number 
of  positive eigenvalues at each e = e k. 

The number 7r(R(e)) can be calculated in three steps. First, one has to form 
scalar products (zs I ~i) ,  which are required in order to form matrix elements Sse(e), 
and hence matrix R(e). These scalar products should be calculated only once, 
irrespective of how many eigenvalues e k are to be calculated. Next, one has to form 
matrix R(e). For each eigenvalue ek, one has to recalculate this matrix many times 
in order to obtain the required convergence. Finally, each time matrix R(e) is 
constructed, one has to find the number ;¢(R(e)) of  positive eigenvalues of  this 
matrix. 

We will now consider in more detail these three steps. Assume for simplicity 

m + # = p v + p e = p .  
The first step, calculation of  the scalar products (zsl¢'i)  is straightforward. 

There are pn such scalar products, and each requires n multiplications. The operation 
count is hence =pn 2. As stated above, this calculation should be done only once, 
irrespective of  how many eigenvalues e k are required. In addition, if the perturbation 
{V, P} is local with localizability l, then at most l components of  vectors zs are 
nonzero. Hence, the calculation of each scalar product (zsl¢'i) requires at most l 
multiplications and the operation count reduces to -~pln. Since the rank pv and Pe 
can not exceed the localizability I of  the corresponding matrices V and P, one finds 
p < 2l. In addition, if the nonzero columns of the matrix V as well as the nonzero 
columns of  the matrix P are linearly independent (which is usually the case), then 
p > I. The operation count for the calculation of the scalar products (zs I ¢'i) in the 
case of  a local perturbation {V, P} is hence of  the order O(p2n). Finally, in some 
quantum chemical applications scalar products (zs I ¢'i) can be simply postulated, in 
which case the associated operation count is O(1). 

Consider now the third step, which involves the calculation of  the number 
~r(R(e)) once the matrix R(e) is constructed. One way to calculate this number is 
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to diagonalize R(e). Since R(e) is a Hermitian p-by-p matrix, this requires 
approximately (2/3)/93 + 30p 2 operations if the very efficient Householder-QR method 
is applied [3]. However, a more efficient way to calculate this number is to perform 
the so-called LDL + decomposition of the matrix R(e): 

L(e) D(e) L(e) + = R(e), 

where L(e) is a unit lower triangular matrix, L(e) + is a unit upper triangular matrix 
(complex conjugate of  L(e)),  while D(E) = diag(dl(e), d2(e) . . . . .  dp(e)) is a diagonal 
matrix. By Sylvester's law [6] matrices D(e) and R(e) have the same inertia. Hence, 
Ir(R(e)) = ~r(D(e)). Further, the LDL + decomposition of a p-by-p Hermitian matrix 
requires approximately p3/6 operations [8], which is much less than in the case of  
a diagonalization. 

Although this LDL + decomposition has a low operation count, it can not be 
recommended. Such a direct decomposition is not guaranteed to be stable and it can 
even fail [3,8]. In order to stabilize this decomposition, some previous pivoting 
strategy should be used [8]. Since the inertia of  D(e) should be the same as the 
inertia of  R(e), only a symmetric pivoting strategy can be used. A natural choice 
is to use the so-called diagonal pivoting method [8, 12-14]:  

L(e) B(e) L(e) + = PR(e)P T, (19) 

where B(e) is a block diagonal matrix with 1-by-1 and 2-by-2 blocks, L(e) is a unit 
lower triangular matrix, and P is a permutation determined in such a way that 
[Lw[ < 1. Decomposit ion (19) is always possible, it is stable, and it requires 
approximately p3/6 operations [12-14].  By Sylvester's law, the inertia of  the matrix 
R(e) equals the inertia of  the matrix B(e). Since L is a unit triangular matrix, the 
determinant of  R(e) also equals the determinant of  B(e). Further, since B(e) is a 
block diagonal matrix with at most 2-by-2 blocks, it can be easily diagonalized to 
a diagonal matrix D ( e ) =  diag(dl(e) . . . . .  do(e) ) with a known inertia. This step 
requires ---O(p) operations. The total operation count for the derivation of  a matrix 
D(e) is hence --p3/6. 

The above algorithm determines the inertia and the determinant of  R(e) in 
a stable and efficient way. Diagonal elements d;(e) of D(e) and the determinant 
I R I = I D I = l I i  di (e) can be used in order to accelerate the search for the eigenvalues 
ek of the eigenvalue eq. (1). Since the determinant IR(ek)[ vanishes, at least one 
diagonal element d i(ek) of  the matrix D(e k) vanishes. One can further show that 
diagonal elements d i(E) are smooth functions of  e, except possibly in a few isolated 
points. Hence, one can use the analytical properties of  the diagonal elements di(E ) 
in order to improve the convergence to the eigenvalue e k. In practical applications, 
one either knows some initial approximate eigenvalue e£ = ek, or one looks for the 
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root(s) ek in some in advance given small interval (e', e"). In either case, after some 
I iterations one obtains the eigenvalue ek. The total operation count associated with 
the decomposition (19) is hence estimated to be =1p3/6 per eigenvalue. 

The decomposition (19) provides an efficient way to calculate the inertia of 
a matrix R(e), once this matrix is known. The calculation of this matrix represents 
our second step, and it requires the calculation of p ( p  + 1)/2 matrix elements Sse(e) 
of a Hermitian matrix S(e). According to (8b), the derivation of these matrix elements 
requires O(pZn) operations, O(n) operations per matrix element. In addition, one 
has to recalculate matrix S(e) repeatedly for different values of e. The total operation 
count associated with the repeated recalculation of these matrix elements is hence 
of the order O(Inp 2) per eigenvalue. This is substantially larger than the operation 
count associated with the decomposition (19). It is hence quite important to decrease 
this operation count as much as possible. 

One way in which this can be done is to replace the exact o(pZn) calculations 
of p(p+ 1)/2 functions Sse(e ) with the approximate O ( p  2) calculation of these 
functions [1,2]. Assume that the exact eigenvalue e k is contained in the interval 
(e', e"). We calculate n R << n terms of the sum (8b) that correspond to the eigenvalues 
h i close to this interval exactly. We approximate the remaining (n - n R) = n terms 
with the first few terms of the Taylor expansion at some point eo ~ (e', e") which 
is the best current estimate of e~. In this way, matrix elements S,p(e) are replaced 

P with approximate matrix elements S~p(e), and the matrix R(e) with the approximate 
matrix R'(e). The initial construction of the Taylor coefficients requires O(pan) 
operations, while each subsequent iteration requires only 0(/9 2 ) operations. After 
1 iterations, one obtains an approximate root e~ = e k. Matrix elements S,p(e) are 

P! then approximated once more with matrix elements Sse(e), this time using the 
Taylor expansion at the point e = e~. Since the approximate root e~ is already quite 
close to the exact root e~, the new approximate root e~ is practically exact [1,2]. 
As predicted theoretically [1] and as shown with numerical experiments [2], such 
an approach reduced the O(lp2n) calculation of the matrix elements S~p(e) to a 
o(pZn) calculation of these matrix elements. The main numerical load is associated 
with the Taylor expansion of the functions Sse(e). This expansion is done twice, and 
it is of the order o(pZn) per eigenvalue. The overhead which is associated with the 
repeated recalculation of these matrix elements for different values of e is of the 
order O(lp 2) per eigenvalue. To this one should add the overhead =Ip3/6 associated 
with the LBL + decomposition of matrix R(e). Both overheads are negligible with 
respect to o(pZn),  especially for large n. The suggested approach thus substantially 
reduces the operation count for the repeated recalculation of the matrix elements 
S~p(e). In addition, this approach is also quite robust, since the operation count is 
essentially independent of the number of iterations I required to derive a single 
eigenvalue. 

In the above numerical analysis of the real LRP method, there is no reference 
to the magnitude of the perturbation and no reference to the eventual degeneracy 
or quasi-degeneracy of the unperturbed system. In particular, the estimated operation 
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counts are not affected by the magnitude of the perturbation and/or by the degeneracy 
of the unperturbed system. In comparison, the standard perturbation method is not 
efficient and it can even fail, unless the perturbation is small. Also, a standard 
perturbation approach requires a special treatment of degenerate and quasi-degenerate 
systems. 

In summary, the suggested real LRP approach requires approximately O(p2n 2) 
operations for the calculation of all n eigenvalues e~ of the perturbed system. If the 
perturbation {V, P} is in addition local with localizability l -- p << n, then the initial 
construction of scalar products (zslOi) requires only O(p2n) operations. In this 
case, only O(/32n) operations are required for the derivation of a single perturbed 
eigenvalue. If 1 is sufficiently small, this is almost two orders of magnitude less than 
any presently known method. 

5. Conclusions 

The LRP method is designed to find eigenvalues and eigenstates of the 
generalized eigenvalue equation (B + V)hU~ = ek(C + P)ud k, where the eigenvalues 
and the eigenstates of the unperturbed eigenvalue equation BOg = Xg COg are known, 
and where B, V, C, and P are n-by-n matrices. The method is numerically 
efficient if the rank p of the perturbation {V, P} is "small" with respect to 
n. In its original formulation, the LRP method applied to arbitrary matrices, 
with the only restriction that the unperturbed system should have a complete set of 
eigenstates. However, physically most important is a real LRP problem, where 
matrices B, V, C, and P are Hermitian and where in addition matrices C and (C + P) 
are positive definite. These requirements guarantee the reality of the eigenvalues e~ 
and ~i. 

The LRP method can be substantially improved in the case of a real LRP 
problem. In particular, the main numerical problem in the general LRP method is 
the calculation of the eigenvalues e k. In the general LRP method, each eigenvalue 
e k is usually derived in an iterative way, starting from some initial approximate 
eigenvalue e~. However, if the initial eigenvalue is not well chosen, the iteration 
may sometimes diverge [1,2]. In the case of the real LRP problem, this 
danger can be completely avoided. It is shown that in this case the eigenvalues 
of the perturbed eigenvalue equation can be efficiently bracketed. The method 
is fast and stable, and it requires O(pZn a) operations for the calculation of 
all n eigenvalues. If the perturbation {V, P} is in addition local with localizability 
l = p, only O(p2n) operations are needed for the derivation of a single eigenvalue. 
Unlike the standard perturbation method whose efficiency strongly depends on the 
magnitude of the perturbation and which requires a special treatment of degenerate 
and quasi-degenerate systems, the efficiency of the LRP method is not affected by 
the magnitude of the perturbation and/or by the degeneracy or quasi-degeneracy of 
the unperturbed system. 
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Appendix 

Proof of lemma 1 

Since matrix C is Hermitian and positive definite, matrix C -1/2 is also Hermitian. 
This trivially follows from the unitary transformation of matrix C in a diagonal 
form, in which form matrix C -1/2 is obviously Hermitian. Matrices C + P and 
C-1/2(C + P)C-1a  = I + P '  are hence congruent [6,7]. By Sylvester's law [6,7], these 
matrices have the same inertia. Since further C + P is positive definite, matrix 
I + P'  is also positive definite. Hence, (q) I I + P '  I ~) > 0 for each vector ~. In particular, 
this holds for the eigenvectors Zj'(~) of the eigenvalue eq. (12a). Hence, and 
from (13), it follows that the derivative ~ ( ~ ) / ~  is less than one. This proves 
lemma 1. [] 

Note that the fact that the slope of the function ~({)  is less than one does 
not yet imply that the equation ~({)  = { has a solution for real {. It only implies 
that this equation has at most  one solution. For example, it is quite conceivable that 
the function ~({)  has a slope less than one, and that it approaches the line y=  
asymptotically from above, never crossing this line. However,  since each eigenvalue 
ek of (1) is a solution of ~({)  = { for some j, this equation should have exactly one 
solution. This follows from the fact that there are n eigenvalues e k and n functions 

Proof of theorem 1 

For an arbitrary but fixed ~ = ~', eigenvalues ?)(~') of relation (12a) lie on 
the intersections of the vertical line ~ = ~' with functions ~(~),  while eigenvalues 
of  e k of the eigenvalue eq. (1) lie on the intersections of the line ~'= ~ with functions 
"~(~) (see fig. 2). Eigenvalues ~-(~') that are >~ '  are all these intersections of the 
vertical line ~ = ~" with functions ~(~) which are situated above the line ~'= ~, 
while the eigenvalues e k that are > ~' are all these intersections of  the line ?'= 
with functions ~(~) which lie on the right-hand side of the line ~ = ~'. Since the 
slope of each ~(~) is less than one, each function ~(~) that crosses the vertical line 

= ~' above the line ~/= ~ crosses this line on the right-hand side of the line ~ = ~' 
exactly once (see fig. 2). There is hence a one-to-one correspondence between the 
eigenvalues ~.(~') of the eigenvalue eq. (12a) that are > ~ '  with the eigenvalues e k 
of the eigenvalue eq. (1) that are >~' .  This proves theorem 1. [] 

Proof of lemma 2 

Matrix elements Ssp(e) of a matrix S(e) can be written in the form 

Ssp(e): ~ (z'~l~7)(~71Zp> 
i=l E-~i 

(A1) 
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Fig. 2. Eigenvalues e k of the perturbed eq. (1) lie on the intersections of the line 7 = 
with the functions 7j(~), while for an arbitrary but fixed { = ~', eigenvalues 7j(~') of the 
auxiliary eq. (9) lie on the intersections of the vertical line ~ = ~' with the functions ~(~). 
Each function ~(~) that crosses the vertical line ~ = ~' above the line y= ~, crosses the 
line 7= ~ on the right-hand side of the vertical line ~ = ~'. This proves theorem 1. 

where Iz~) = C -it2 IZs). Hence, 

S(e) = Z'+(e - B ' ) - I z  ', (A2) 

where Z ' = [ z ]  . . . . .  z~,+u] is an n - b y - ( m + # )  matrix with matrix elements 
l t 

Zsp= (s lzp) ,  where we have used the identity 

( e -  B' ) -I  = 
O~ 

i=l e - ~ i  ' (A3) 

t # +  
which follows from (12b). One also finds V ' -  ~P '  = ~s  r/$(~)z~ z, , or in a matrix 
form 

V'  - ~ P' = Z' N(~) Z' +. (A4) 
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Consider now matrix M(e, ~): 

I (B'  - e) -l  Z'  

M =  N(~)Z '+ I -N(~)S(e)J" 
(A5) 

Inserting (A2) and (A4) into expression (16) for matrices K and I, one finds after 
some algebra L = M+KM. This proves lemma 2. [] 

Remark 

If  one analyzes the derivation of  the relation L = M + K M ,  one finds that it 
is not  necessary for matrix N(~) to be diagonal.  It is suff icient  for this matr ix to 
be Hermit ian and non-singular.  In particular, matrices £1 and T which define N(~) 
can be arbitrary Hermitian and non-singular  matrices. Since these matrices determine 
the decomposit ion (5) of  perturbation matrices V and P, one can accordingly generalize 
all the obtained results. However,  this general izat ion is probably not  necessary,  
since the decomposi t ion (5) is already general enough for all practical applications.  
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